
Theor Chim Acta (1989) 76:65-70 Theoretica 
Chimica Acta 
�9 Springer-Verlag 1989 

An extension of the Coulson-Rushbrooke- 
Longuet-Higgins theorem 

II. A topological method for calculation of the number of nonbonding 
molecular orbitals* 

Stojan Karabunarliev ~ and Nikolay Tyutyulkov 2 
1 Department of Physical Chemistry, High School of Chemical Technology, 8010 Burgas, Bulgaria 
2 Institute of Organic Chemistry, Academy of Sciences, 1113 Sofia, Bulgaria 

(Received June 13, 1988; revised and accepted February 6, 1989) 

Summary. A novel topological method which predicts the number of Hiickel 
nonbonding molecular orbitals and the set of atomic orbitals of which they 
are composed is put forward. It may be applied to a large class of homo-, 
heteronuclear, alternant, and nonalternant systems. 
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I. Introduction 

Organic radicals and polyradicals have become targets of intense research due to 
the possibility of synthesizing organic ferromagnets [1-3]. Several unpaired 
electrons may give rise to overall states of various multiplicity. The case of 
parallel spin alignment is of special interest because macroscopic spin may be 
achieved by incorporating radicals or polyradicals in a molecular crystal or in a 
single polymer. A number of high spin conjugated alternant hydrocarbons [4] 
have been synthesized. The H/ickel MO (molecular orbital) method suggest there 
are nearly degenerate partially occupied orbitals. This degeneracy was termed 
topological since it depends only upon the molecular skeleton [5, 6]. In most 
cases it may be predicted by simple graph-theoretical approaches. 

According to the Coulson-Rushbrooke-Longuet-Higgins theorem [7-9] an 
alternant hydrocarbon has at least N - N  nonbonding molecular orbitals 

* Firs t  c o m m u n i c a t i o n :  (1987) Chem Phys Letters 139:281 
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(NBMO's),  where ~ and 2V are the number of starred and unstarred ~z-centers, 
respectively. A more accurate approach deals with the resonance structures. As 
pointed out by Longuet-Higgins [9], an alternant hydrocarbon of N conjugated 
atoms has at least N - 2D NBMO's,  where D is the maximum number of double 
bonds occurring in any resonance structure. Both methods yield a lower limit for 
the number of NBMO's. Exact graph-theoretical approaches for the number of  
NBMO's in conjugated hydrocarbons [10] and the MO pattern of conjugated 
compounds in general [1l, 12] have also been developed. 

In the present paper, we prove a new criterion for the minimum number of 
NBMO's in conjugated compounds. It is applicable to nonalternant molecules, 
and to molecules with heteroatoms, and may be viewed as a generalization of  the 
Coulson-Rushbrooke-Longuet-Higgins theorem [7-9] to these two cases. The 
investigations reported in this paper are a continuation of  those presented in 
[13, 14], where the Coulson-RushbrookeLonguet-Higgins  theorem was general- 
ized for some classes of alternant hydrocarbon heteroanalogues. 

2. Formulation and proof of the method 

Let R denote the maximal set of disjoint homonuclear re-centers of  a coniugated 
compound, i.e. the set R contains neither adjacent re-centers nor heteroatoms, 
and hence the Coulomb integrals er are equal for all the K-centers r of the set R 
(i.e., for all r ~ R). In the case where the number of K-centers in the maximal 
disjoint set, N R, is greater than half the total number of  re-centers in the 
compound N, there are at least 2NR -- N nonbonding MO's, i.e. N o ~> 2N R - N. 

We shall denote the number of re-centers in the complement of the maximal 
disjoint set by Ns = N - ~ r  In contrast to the case of  an alternant system, the 
set S may comprise heteroatomic re-centers and/or pairs of  adjacent x-centers. 
When constructing the Hfickel matrix, we shall assume an appropriate labelling 
of the x-centers of  the sets R and S: r = l , 2 , . . . , N  R , r E R ;  
s = NR + 1, NR + 2 . . . . .  N, s e S. Further, since the Coulomb integrals e, for the 
set R are equal, we choose the energy reference level E0 = C~r, SO that in the 
Hiickel matrix the diagonal elements for the set R vanish, i.e. H,, = 0 for r e R. 
Since the atoms in R are not bonded, the off diagonal eIements H,,,, r, r '  ~ R, are 
also zero and the Hfickel hamiltonian matrix has a block form: 

A+ 
H -- B " (1) 

The upper left zero submatrix corresponds to the AO's (atomic orbitats) of  
the set R. The matrix element H,, of  the Hiickel hamiltonian for AO's s e S and 
r e R are represented by the matrix A of Ns rows and NR columns. Matrix A + 
stands for the transpose of  A. The square matrix B with elements Hi,,, s, s '  ~ S, 
is of  order Ns. Representing the Hfickel matrix as 

H = H1+ H2 
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where 

00 A+ O 
H I =  0 ' / /2= 

o 
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and applying the theorem that the rank of the sum of matrices is not greater than 
the sum of the ranks of the addends, we obtain that 

rank(H) ~< rank(H0 + rank(H2) ~< Ns + Ns 

since rank(H1) <~ Ns, rank(H2) <~ Ns. As a consequence of rank(H) ~< 2Ns, there 
are at least N -  2_~ = 2NR-  N zero eigenvalues corresponding to NBMO's. 

Corollary 1. The nonbonding MO's  are composed only of  AO's  of  the maximal 
disjoint set R. The eigenvectors C for zero eigenvalues (represented by columns) 
satisfy the matrix" equation: 

H .  C =0 .  (2) 

Let X and Y denote the components of the eigenvectors for the sets R and S, 
respectively: 

C =  X; Y=(x~) +, i = 1 , 2  . . . . .  NR; 
Y Y = (y,)+,  k = l , 2  . . . . .  Ns.  

Taking into account the block form of the Hfickel matrix (1), Eq. (2) takes the 
forn2~ 

and splits into the following two equations 

A + . Y = 0 ,  (2a) 

A . X + B - Y = O .  (2b) 

Since we treat here only the NBMO's due to the block form of the Hfickel 
matrix, we may assume that matrix A (and A +, respectively) has the greatest 
possible rank, Ns. In such a case, Eq. (2a) has only a trivial solution, Y = 0, 
corresponding to zero AO coefficients for the set S. Consequently, 

A �9 X = 0. (3) 

The above equation represents a system of Ns homogeneous linear equations for 
NR variables, X~, r =  1,2 . . . .  ,NR, and has N R - r a n k ( A ) = N R - N s  = 
2NR-  N nontrivial linearly independent solutions corresponding to the AO 
coefficients of NBMO's for the maximal disjoint set R. 

Corollary 2. I f  the conjugated system has various maximal disjoint sets, 
Rk, k = 1, 2 . . . .  , K, the N B M O '  s are composed only of  the AO'  s o f  their intersec- 
tion R) c~ R 2 (~. �9 .~  R K. According to Corollary 1, AO coefficients are zero Jbr any 
complement Sk, i.e. they vanish for their union S~ ~)S~ w �9 �9 .w Sx  which is identical 
to the complement o f  R~ c~ R2 n �9 �9 "R~.. 
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3. Application of the method 

When applied to alternant hydrocarbons, our method gives the same results 
about the number of NBMO's as the Longuet-Higgins theorem [9]. Still, as a 
result of Corollary 1, the set of AO's from which the NBMO's are composed, 
may also be obtained. In the case of  tetramethyleneethene, whose Hfickel graph 
is given in Fig. 1, the maximal disjoint set (marked by "*") comprises all 
terminal n-centers. 

) ( 
Fig. I 

The system has two NBMO's, localized on these n-centers. The substitution of 
the n-centers not included in the maximal disjoint set has no effect upon the 
NBMO's. 

In the case of the isobutylene radical, which is an odd alternant system, 

2 2 

Fig. 2 

the theorem of Coulson and Longuet-Higgins [8] predicts that the NBMO is 
composed of AO's of n-sites 1, 3, 5. However, since there are two maximal 
disjoint sets comprising positions 1, 3, 5 and 1, 4, 5, respectively, it follows from 
Corollary 2 that the NBMO coefficients are nonzero only for sites 1 and 5. 

An example for a nonalternant system is the model hydrocarbon 2,4- 
dimethyleneazulene: 

Fig. 3 

Molecule 3 has N = 12 n-centers, and the number of n-sites in the maximal 
disjoint set is N~ = 7. Therefore, 3 has two NBMO's and, if electrically neutral, 
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should represent a diradical. The same result is derived from the characteristic 
polynomial for 3, which is 

xa(x 1 ~  13x8+ 60x6-t -- 2x s -  118x 4 -  10x3+ 91x2+  12x - 18) = 0 

(where ~ and /~ for x = (c~- e)/~ are the Coulomb and resonance integrals, 
respectively. Consequently, the polynomial has two roots x = 0 which corre- 
spond to two NB M O' s  of  energy e = e). 

The heteronuclear nonalternant system 4 has N = 5 K-centers and A~ = 3. 

\ / 
x y 

Fig. 4 

Therefore 4 has one NBMO. This is seen also from the characteristic polynomial 
for 4 (c~ = e + Qfl; c~y = ~ + Rfl): 

x { x  4 + (Q + R ) x  3 - (5 - Q R ) x  2 + (2 - 2Q - 2R)x  + 3} = 0 

which has one root  x = 0. 
The Hfickel graph of 2-methylenefulvene 5 has two maximal disjoint subsets 

of  cardinality 4. 

7 6 7 6  

Fig. 5 

According to Corollary 2, the N B M O  is composed of AO's  1, 6, and 7. 
The method may be applied to some one-dimensional systems, representing 

models of  nonclassical polymers [6, 15]. Their common feature is that they 
cannot be represented by a classical (Kekul~) formula and the number  of  
NBMO's  is proport ional  to the number  of  unit cells. An example of  such a 
system is the nonalternant polymer 

. . . . .  [ A 
t v 1 

Fig. 6 
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which has  a degenera te  N B M O ,  since each unit  cell compr i s ing  9 n-si tes  has a 
max ima l  dis joint  set o f  ca rd ina l i ty  5. 

4. Concluding remarks 

Proceeding  f rom a s imple topo log ica l  cr i ter ion,  the me thod  permi ts  us to predic t  
whether  a given mode l  c o m p o u n d  represents  a rad ica l  or  a po lyrad ica l ,  and  to 
de te rmine  the set o f  ca rbon  a toms  whose subs t i tu t ion  has no effect u p o n  the 
N B M O ' s .  I t  m a y  serve as a guiding pr inciple  in the design o f  h o m o -  and  
he te ronuc lear  high-spin  organic  systems. 
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